Patient dose resulting from CT examinations in Yazd, Iran

F. Bouzarjomehri1*, M.H. Zare2, D. Shahnazi-Gahrouei2

1 Department of Medical Physics, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
2 Department of Medical Physics, Isfahan University of Medical Sciences, Isfahan, Iran

\textbf{Introduction:} Advances in medical technology make complex diagnostic procedures readily available to the clinical practice. The patient dose will highly depend on the diagnostic procedure used, and thus on how the population dose and dose distribution may change with improvement of technology(1). It is well known that CT is related to high radiation dose to the patient. Many ways are found in the literature to describe and measure radiation dose in CT examinations(2-4). Computed tomography has made dramatic advances, both in its breadth of application, and in its technological improvements. The advances are such that it is possible with the spiral technique to carry out an entire examination of the chest within a single breath hold as against a few minutes in earlier systems. Yet these advances have brought with them the potential for greatly increased doses of radiation to the patient(5).

\textbf{Background:} With the introduction of computed tomography in diagnostic radiology a new and fundamentally different imaging modality has become available. Meanwhile, it is clear that the absorbed doses by the patients during CT were relatively high in comparison with those of other diagnostic radiology techniques. The aim of this study was to determine the average absorbed dose in Yazd province by CT examinations, and to survey the potential risks per year by these examinations. Materials and Methods: This study was conducted in CT centers of Yazd during 2005-2006. The examination frequencies from 3 CT scanners were collected from all types of examinations. Effective dose were determined by CT Dose program (ImPACT CT patient dosimetry calculator). To use of this software, CTDI\textsubscript{air}, mAs and the thickness and number of slices in each type of CT examinations should have been measured. CTDI\textsubscript{air} was measured by pencil diode detector. Results: It was estimated that the annual collective dose and caput dose were about 32.48 Person-Sv and 0.038 mSv, respectively for the Yazd population, which is lower than that reported for other countries. The numbers of examinations per 1000 people of Yazd was 18 which were equal to many other countries such as UK and New Zealand. The mean effective dose of each CT examinations was also lower than that of other countries. Conclusion: Using the ICRP risk factors, radiation dose from CT could be induced to about 1 fatal cancer per year in Yazd. Therefore choosing CT imaging must be completely justified. Iran. J. Radiat. Res., 2007; 4 (3):

\textbf{Keywords:} Quality control, CTDI, effective dose, caput dose, health physics.

*Corresponding author:
Dr. Fatollah Bouzarjomehri, Department of Medical Physics, Shahid Sadoghi University of Medical Sciences, Yazd, Iran.
Fax: +98 351 7244078
E-mail: Bouzarj_44@yahoo.com
the exception of angiography and GI tract examinations, CT examinations deliver to the patient a radiation dose considerably higher than that of the conventional X-ray. For example, it has been reported that in conventional radiology a chest examination results in a typical effective dose of 0.04 mSv compared with 8.3 mSv in CT, while in a head examination the effective dose are 0.1 mSv and 1.8 mSv respectively.

Although magnetic resonance imaging was expected to reduce the frequency of computed tomography, but this has not happened. Indeed, the use of computed tomography has grown. Wall reported a 30% reduction in doses of radiation from common radiological procedures compared with 10 years ago but an increase in radiation doses of about 35% for computed tomography examinations. In view of the above considerations, it can be said that there exists a need to monitor CT examinations doses on a national basis. Several surveys have been carried out in various countries. There wasn't any CT scanner fifteen years ago in Yazd, but now two conventional CT and one spiral scanner system are exist. In the present study, the values of CT doses, the examination frequencies, the collective effective dose and the per caput dose are reported.

MATERIALS AND METHODS

At the time of survey, three CT scanners in Yazd province were active (Ge CTCO 4000, Shimadzu SCT-7800 and Shimadzu SCT-3000TX) that correspond to 3.4 CT scanner per million populations. This ratio in various countries for example Japan, Greece and the UK during the last 8 years has been 68.5, 14.9 and 6, respectively. This survey lasted about 1 year. The questionnaire to be answered by three general hospitals consisted of the number of patients examined, and the frequency of examinations for each category. It also requested information on the kVp, mAs, number of slice, slices width, couch increment and pitch factor for each type of examination. In this survey the effective dose values were calculated from CTDI\textsubscript{air} (computed tomography dose index in air) measurement undertaken for each of examination in three scanners.

CTDI defined as:

\[
\text{CTDI} = \frac{1}{T} \int_{-\infty}^{+\infty} D(z) \, dz
\]

that is the integral along an axis parallel to the axis of rotation z, of the dose profile D(z) for a single slice, divided by the nominal slice thickness T.

In practice, CTDI\textsubscript{100} is measured base on the below equation:

\[
\text{CTDI}_{100} = \frac{C.E.(\text{mGy})}{N.T}
\]

Where E is the value which pencil dosimeter shows in mGy, C is Calibration factor, N is number of slices per rotation in conventional scanner (N=1 in our study) and T is thickness of slice.

DLP is the dose-length product which defined by the following equations:

For axial scanning:

\[
\text{DLP} = \sum_i \text{CTDI}_i \cdot T \cdot N \cdot C
\]

For helical scanning:

\[
\text{DLP} = \sum_i \text{CTDI}_i \cdot W \cdot T \cdot A \cdot t
\]

where i represents each scan sequence forming part of an examination, N is the number of slice with thickness T, C is mAs, A is the tube current (mA), t is total acquisition time, and CTDI\textsubscript{w} is the weighted CTDI, which can be measured in cylindrical phantom by a calibrated pencil diode detector (Unfors multi-o-meter, Sweden). The most important scanning parameters have been tube voltage (kVp), tube current exposure time product (mAs), and slice thickness, for each examination type in CTDI measurement. In order to estimate the radiation risk associated with CT examination, it was necessary to estimate Effective Dose (ED) which was the sum of the products of organ doses and corresponding...
weighting factors \(^{(15)}\), Shrimpton et al. calculated ED from CTDI\(_{\text{air}}\) measurements by using Monte Carlo Conversion Coefficients \(^{(16, 17)}\). Another way for measuring ED is the use of an anthropomorphic physical phantom, which is measured in the location of organ or tissue of interest usually by using thermo luminescent (TLDS), and then ED can be calculated. As a practical alternative, EC (European Commissioning) give region-specific normalized coefficients (EDLP) to estimate the risk of CT examination protocol \(^{(18, 19)}\). Effective dose is derived from values of DLP with following equation \(^{(20)}:\)

\[
E = E_{\text{DLP}} \cdot \text{DLP} \quad \text{(mSv)}
\]

That \(E_{\text{DLP}}\) and DLP are in mSv.mGy^{-1}cm^{-1} and mGy.cm, respectively. General levels for different regions in patient (Brain, Neck, Chest, Abdomen and Pelvis) are given in table 1. However, these dose values have been based on the result of previous survey information at 1980s \(^{(21)}\). The technical improvement in CT, and the use of the spiral technique in particular, has offered new possibilities in both diagnosis and dose reduction \(^{(21)}\). The purpose of our previous study was to evaluate routine CT examination protocols utilized in Yazd hospitals, and to compare the results with European Commission Reference Dose Levels (EC, RDLP), but in the present survey it was to estimate the annual effective dose for the population, so the effective dose was determined by CT Dose program (ImPACT CT patient dosimetry calculator version 0.99X-2006). This software can calculate the effective dose or organelles dose resulting from CT examinations base on Monte Carlo simulation of x-ray which was achieved by Jones and Shrimpton \(^{(19)}\). In order to use this software, CTDI\(_{\text{air}}\) must be measured and added to mAs, thickness and number of slice in each type of CT examination \(^{(19)}\). CTDI\(_{\text{air}}\) was also measured by a pencil diode detector (Unfors, Moli-O-Meter, Sweden).

RESULTS AND DISCUSSION

Table 2 shows the number of CT units, and the number of units per million people in Yazd and various countries. Yazd has only three CT scanners and the CT units per million populations are fewer than those for other countries such as Japan, and Australia.

The annual numbers of CT examinations together with the number of CT examinations per 1000 people are given in table 3. The frequency of examinations per year, per scanner in different countries, and caput dose are also shown in this table. Based on the report, 5218 annual exams per scanner were achieved in Yazd hospitals which are more than the similar cases in other countries except Greece. On the other hand the frequency of exams in Yazd province has been lower than other countries except Denmark. This work load on each of CT units with limited operators could have decreased image quality. Table 4 gives the percent of each type of exam including with and without contrast for adults and pediatrics. Effective whole body dose was determined by CT Dose software.

Table 4 also shows mean effective dose and collective dose of each type of CT exams in Yazd. The effective doses resulting of each examination type were used for calculation of collective effective dose from the 3 scanners. The head examinations, which made up

Table 1. Proposed European Commission Reference Levels and region specific normalized effective doses for some routine CT examination \(^{(15)}\).

<table>
<thead>
<tr>
<th>Examination</th>
<th>(\text{CTD}_{\text{w}}) (mGy)</th>
<th>DLP (mGy.cm)</th>
<th>(E_{\text{DLP}}) (mSv.mGy^{-1}cm^{-1})</th>
<th>ED (mGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>60</td>
<td>1024</td>
<td>0.0023</td>
<td>2.35</td>
</tr>
<tr>
<td>Neck</td>
<td>60</td>
<td>1024</td>
<td>0.0054</td>
<td>5.53</td>
</tr>
<tr>
<td>Chest</td>
<td>30</td>
<td>650</td>
<td>0.0170</td>
<td>11.05</td>
</tr>
<tr>
<td>Abdomen</td>
<td>35</td>
<td>780</td>
<td>0.0150</td>
<td>11.7</td>
</tr>
<tr>
<td>Pelvis</td>
<td>35</td>
<td>570</td>
<td>0.0190</td>
<td>10.83</td>
</tr>
</tbody>
</table>

\(\text{CTD}_{\text{w}}\): weighted CT Dose index; DLP: dose-length product; \(E_{\text{DLP}}\): region specific normalized effective dose.

a: no specific reference value for neck is yet available, but for comparison brain values are used.
65.8% of all exams, were the most common examination with average effective dose of 0.845 mSv. Although it was the most common examination, its contribution was 29% to the overall effective dose. The next most common CT examination was abdomen and pelvis which made up to 6.2% of all examinations. These exams with the largest average effective dose (6.2 and 8.45 mSv) were contributed to nearly 39% of the overall CT effective dose.

Table 5 shows the average effective doses of this survey which are compared with the surveys conducted in Norway(14), UK (NRPB)(16), New Zealand(10) and Australia (22).

The overall CT exam doses in the present study are lower than other studies, except in that of pelvis. It is suspected that the reason to this case lies in the large number of scanners or the greater number of scans per exam performed in those countries, which the range of effective dose are very wide.

The mean effective dose per CT examination was determined by summing the product of the effective dose in the number of examinations for each type of examination in each center and divided by the total number of examinations recorded in our survey. The per caput effective dose were determined from dividing the collective dose by the Yazd population (860,000 person). Table 6 shows the mean effective dose per examination, collective dose and dose per caput of Yazd and the other countries. The mean effective dose of 3.43 for Yazd is almost similar to that found by studies in other countries, except Australia. This could be explained by the large number of scans per examination in Australia (22).

The ICRP 60 gives a risk coefficient of 4% per Sv for radiation induced fatal cancers for working age population(13). The use of this coefficient and effective dose from the present survey, the estimation of fatal cancers and the number cancer per examination have been determined and are given in table 7. It was estimated that CT examination in Yazd could be induced to about 1.3 fatal cancers.
Patient dose from CT examination

Table 4. Frequency of examinations type and mean effective and collective dose in separately.

<table>
<thead>
<tr>
<th>Examination type</th>
<th>% of all Exams</th>
<th>Examinations per year</th>
<th>Mean effective dose (mSv)</th>
<th>Collective effective dose (person·Sv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>65.8</td>
<td>11421</td>
<td>0.845</td>
<td>9.46</td>
</tr>
<tr>
<td>Neck</td>
<td>1.3</td>
<td>232</td>
<td>1.36</td>
<td>0.411</td>
</tr>
<tr>
<td>Chest</td>
<td>3.8</td>
<td>670</td>
<td>5.43</td>
<td>5.11</td>
</tr>
<tr>
<td>Abdomen</td>
<td>2.9</td>
<td>517</td>
<td>6.2</td>
<td>5.03</td>
</tr>
<tr>
<td>Pelvis</td>
<td>3.3</td>
<td>574</td>
<td>8.45</td>
<td>7.61</td>
</tr>
<tr>
<td>Sinus</td>
<td>6.9</td>
<td>1203</td>
<td>0.21</td>
<td>0.304</td>
</tr>
<tr>
<td>HRCT</td>
<td>2.9</td>
<td>504</td>
<td>0.90</td>
<td>0.453</td>
</tr>
<tr>
<td>Lumbar Spine</td>
<td>3.1</td>
<td>535</td>
<td>2.4</td>
<td>1.33</td>
</tr>
<tr>
<td>Brain (pediatric)</td>
<td>9.3</td>
<td>1628</td>
<td>1.37</td>
<td>2.23</td>
</tr>
<tr>
<td>Abdomen(pediatric)</td>
<td>0.003</td>
<td>58</td>
<td>9.05</td>
<td>0.525</td>
</tr>
<tr>
<td>Neck (pediatric)</td>
<td>0.0008</td>
<td>15</td>
<td>1.57</td>
<td>0.023</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>17357</td>
<td>32.48</td>
<td>32.48</td>
</tr>
</tbody>
</table>

per year and that is about one fetal cancer induced for every 14000 examinations. There are also some mitigating factors which reduce the estimate of the number of induced cancer made here. This can partly be due to a shorter life expectancy than the general population that in CT patients.

Table 5. Comparison of mean effective dose with those from survey in Norway, UK, NZ and Australia.

<table>
<thead>
<tr>
<th>Exam</th>
<th>This work</th>
<th>UK</th>
<th>NZ</th>
<th>Norway</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>.845</td>
<td>1.8</td>
<td>2.2</td>
<td>2</td>
<td>2.6</td>
</tr>
<tr>
<td>Chest</td>
<td>5.43</td>
<td>8.3</td>
<td>9.9</td>
<td>11.5</td>
<td>10.4</td>
</tr>
<tr>
<td>Abdomen</td>
<td>6.2</td>
<td>7.2</td>
<td>11.6</td>
<td>12.8</td>
<td>16.7</td>
</tr>
<tr>
<td>Pelvis</td>
<td>8.45</td>
<td>7.2</td>
<td>7.2</td>
<td>9.8</td>
<td>11</td>
</tr>
<tr>
<td>Lumbar Spine</td>
<td>2.4</td>
<td>3.6</td>
<td>5</td>
<td>4.5</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Table 6. Mean and collective population dose.

Table 7. Risk resulting from CT examinations in Yazd.

<table>
<thead>
<tr>
<th>Exam</th>
<th>Yazd</th>
<th>Japan</th>
<th>NZ</th>
<th>UK</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of exams</td>
<td>17</td>
<td>850</td>
<td>62</td>
<td>12000</td>
<td>1060</td>
</tr>
<tr>
<td>Mean dose per exam (mSv)</td>
<td>3.43</td>
<td>3.9</td>
<td>4.4</td>
<td>4.7</td>
<td>6.6</td>
</tr>
<tr>
<td>Collective dose (person·Sv)</td>
<td>32.48</td>
<td>3300</td>
<td>273</td>
<td>56000</td>
<td>7000</td>
</tr>
<tr>
<td>Mean dose per caput (mSv)</td>
<td>.038</td>
<td>.059</td>
<td>.08</td>
<td>.45</td>
<td>.39</td>
</tr>
</tbody>
</table>

CONCLUSION

Computed tomography (CT) is an extremely valuable diagnostic tool. Recent advances, particularly in multi detector technology, have provided increased and more diverse applications. However, there is also the potential for inappropriate use and unnecessary radiation dose. Some data indicate that low-dose radiation (such as that
in CT) may have a significant risk of cancer, especially in young children. The main conclusion to be drawn from this survey’s results is that CT has become a major, if not the main, contributor to the dose from diagnostic radiology. There is a potential risk of induction between 1 and 2 fatal cancer per years from CT exams in Yazd. In view of this potential risk, effort needs to be put into dose reduction techniques and strategies. It is important to limit CT radiation by following the ALARA (As Low As Reasonably Achievable) principle. There is a variety of strategies to limit radiation dose, including performing only necessary examinations, limiting the region of coverage, and adjusting individual CT settings based on indication, region imaged, and size of the patient. Referring physicians should be aware of the potential risks from CT and choose this modality only if the likely benefit to the patient is greater.

ACKNOWLEDGMENT

The authors wish to thank the personnel's of Shahid Sadooghi and Shahid Rahmoomo hospitals for their valuable assistance in data collection, especially Mr. shaigh, salimian and Saeid kafi.

REFERENCES